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Abstract. The transfer-matrix method widely used in the calculation of the band structure
of semiconductor quantum wells is found to have limitations due to its intrinsic numerical
instability. It is pointed out that the numerical instability arises from free-propagating transfer
matrices. A new scattering-matrix method is developed for the multiple-band Kane model within
the envelope-function approximation. Compared with the transfer-matrix method, the proposed
algorithm is found to be more efficient and stable. A four-band Kane model is used to check the
validity of the method and the results are found to be in good agreement with earlier calculations.

In order to understand the transport properties and features exhibited in the optical spectrum
of semiconductor quantum wells and superlattices, it is essential to calculate the pertinent
electronic band structure. Besides the tight-binding approach [1], the envelope-function
approximation (EFA) [2] is also widely used in the calculation of the band structure of
quantum wells and superlattices. Within EFA formalism, the band structure is calculated
by adopting the Luttinger–Kohn model [3] and a set of coupled second-order differential
equations for the envelope functions are solved in the numerical calculation. There have
been many methods proposed for solving the simultaneous equations, e.g., the variational
approach [4], transfer-matrix methods [2, 5, 6], and the finite-difference method [7].

Although the transfer-matrix method has been extensively used in the context of the
Kronig–Penney model and multiple-band Kane model, we will show that the algorithm
is not stable in the numerical calculation and that it cannot be adapted to quantum wells
of arbitrary dimensions and layer interleaving. The intrinsic numerical instability of the
transfer-matrix method has also been established in other areas [8, 9]. The shortcomings
of the transfer-matrix method can be completely overcome by using the scattering-matrix
technique [9]. In this paper, we propose a scattering-matrix approach to the calculation of
the band structure of semiconductor quantum wells on the basis of the multiple-band Kane
model.

Let us consider the case of multiple quantum wells and set thez-axis to be perpendicular
to the layers. Within the context of the multiple-band Kane model [11], the envelope
functions9(r) in each layer satisfy the effective-mass equation [10]

H9(r) = E9(r)

H = k̂zAk̂z + (k̂zB + Bk̂z)/2 + C + V
(1)

whereV is the potential arising from the band offsets and is assumed to be constant in each
layer. The envelope function can be expanded as a linear combination of the corresponding
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bulk solution for a givenE, kx , andky . For some simple cases, e.g. the widely used 4× 4
Kane model neglecting the conduction and spin–orbit bands, solutions for the effective-mass
equation in the bulk can be given analytically [2]. Here, we apply a simple algorithm to
solve the bulk problem because it is very difficult to provide analytical solutions if the
Hamiltonian is of larger dimensions.

For a givenE, kx , andky , the solution for the effective-mass equation in the bulk can be
written as9 = eikzF, whereF is a combination of Luttinger–Kohn or Kane wave functions
and satisfies the relation

[Ak2 + Bk + (C + V − E)]F = 0. (2)

Defining F′ = kF, the equation can be rewritten as[
0 I

−A−1(C + V − E) −A−1B

] [
F
F′

]
= k

[
F
F′

]
. (3)

Solving the equation, we can obtain 2N eigenvalues±kn and eigenvectorsF±
n , whereN is

the number of the bands considered in the model. The wave function can be expanded as

9(z) =
N∑

n=1

(c+
n eiknzF+

n + c−
n e−iknzF−

n ). (4)

Hence it can be described by a vectorC = [C+, C−]T, whereC± areN -dimensional column
vectors with elementsc±

n . Using the boundary conditions given in references [10] and [12],
the following relation can be obtained at the interface between layeri and layerj :

MiCi = Mj Cj

Mi,j =
[

F+
i,j F−

i,j

J+
i,j J−

i,j

]
(5)

whereF± andJ± areN -dimensional matrices with columnsF±
n andJ±

n = (±Akn+B/2)F±
n ,

respectively.
A free-propagating transfer matrixP connecting two ends of a layer of widthd is given

by

P =
[

P− 0
0 P+

]
(6)

whereP± are diagonal matrices with elements e±iknd . Supposing that the total number of
layers isNL, the overall transfer matrix is then constructed by the multiplication of the
interface and free-propagating transfer matrices [12]:

T = T1,2P2 · · · PNL−1TNL−1,NL
(7)

whereTn−1,n is the transfer matrix associated with the interface between layern − 1 and
layer n and is given byTn−1,n = M−1

n−1Mn from equation (5).
If the overall transfer matrix is written in the block form

T =
[

T11 T12

T21 T22

]
(8)

then the band structure can be obtained by finding the zeros of the determinant ofT11.
But it is found that the transfer-matrix method cannot provide all of the energy levels
of the quantum wells especially when the in-plane wavenumberkx or ky is not close
to the 0 point. Figure 1 shows the scanning result obtained from the transfer-matrix
method for a GaAs/Al0.25Ga0.75As single quantum well (100̊A) and multiple quantum wells
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Figure 1. The result from the transfer-matrix method for a GaAs/Al0.25Ga0.75As single quantum

well (100Å) and multiple quantum wells (100̊A/300 Å) for kx = 0.02 Å
−1

andky = 0.01 Å
−1

obtained using the four-band Kane model.

(100 Å/300 Å) for kx = 0.02 Å
−1

andky = 0.01 Å
−1

using the four-band Kane model [2].
There should be six energy levels in this kind of structure under the valence band offset
120 meV, while the results cannot give all of the levels for all possible single- or multiple-
quantum-well structures. The same problem also arises in another transfer-matrix method
[5] which is slightly different from one described above. We would like to note that the
transfer-matrix method is also found not to be stable in the calculation of the conductance
of one-dimensional disordered systems [9].

The numerical instability of the transfer-matrix method arises fromP−. In a layer where
V is larger thanE, some of±kns would not be real and the correspondingP −

nn would
become much larger, especially for layers of large width. Therefore, the transfer-matrix
method cannot apply to the case of the structure containing barriers of large dimensions.

The numerical instability of the transfer-matrix method can be completely removed by
using the scattering-matrix technique. Within the scattering-matrix formalism, the wave
functions of the two adjacent layersi andj are related by a scattering matrix:[

C−
i

C+
j

]
= Si,j

[
C+

i

C−
j

]
Si,j =

[
F−

i −F+
j

J−
i −J+

j

]−1 [
F+

i −F−
j

J+
i −J−

j

]
. (9)

The scattering matrix for free propagation between two ends of a layer of widthd is
given by

Sf ree =
[

0 P+

P+ 0

]
. (10)

The overall scattering matrix for the structure containing a certain number of wells and
barriers can be obtained by decomposing it into interface parts and free-propagating parts
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using a composition law [13]. Considering two scattering matrices defined by

S1 =
[

r1 t′1
t1 r′

1

]
and S2 =

[
r2 t′2
t2 r′

2

]
(11)

wheret, t′, andr, r′ are the transmission and reflection probabilities for fluxes incident from
the left and right respectively, the composed scattering matrixS12 constructed fromS1 and
S2 can be calculated as

t12 = t2(I − r′
1r2)

−1t1

t′12 = t′1(I − r2r′
1)

−1t′2
r12 = r1 + t′1r2(I − r′

1r2)
−1t1

r′
12 = r′

2 + t2r′
1(I − r2r′

1)
−1t′2.

(12)

For convenience, the above procedures are denoted by an operator⊗, i.e., S12 = S1 ⊗ S2.
The overall scattering matrix is then expressed as

S = S1,2 ⊗ Sf ree

2 ⊗ · · · ⊗ Sf ree

NL−1 ⊗ SNL−1,NL
. (13)

If the overall transfer matrix is written in a block form similar to equation (8), we have
the relationS21 = −T−1

11 . Hence the band structure can be obtained by finding the maximum
value of the determinant ofS21.

The scattering-matrix approach to calculations of the band structure does not limit itself
to the case of rectangular quantum wells. More general well potentials can be approximated
by a series of constant steps and the number of the steps should be sufficiently large to
provide the desired convergence in the result. In this piecewise approximation scheme, the
coefficientscn andkn in equation (4) would be position dependent.

Figure 2. The result obtained from the scattering-matrix method for GaAs/Al0.25Ga0.75As
multiple quantum wells. The parameters are the same as those in figure 1.

In figure 2, we provide the scanning result obtained from the scattering-matrix method
for GaAs/Al0.25Ga0.75As multiple quantum wells. The parameters are the same to those
adopted in figure 1. From the result, we find that all six energy levels are clearly shown. In
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the numerical calculation, we also find that the scattering-matrix algorithm is not sensitive
to the dimensions of the barriers.

Figure 3. The valence band structure of GaAs/Al0.25Ga0.75As multiple quantum wells
(100 Å/300 Å) for ky = 0 calculated by the scattering-matrix method.

In order to check the validity of the scattering-matrix method, we calculate the valence
band structure of GaAs/Al0.25Ga0.75As multiple quantum wells (100̊A/300 Å) and the results
are given in figure 3. Similar structures have been calculated by many authors and the
comparison between our results and those in the literature shows that the results from the
scattering-matrix method are in good agreement with earlier calculations.

In summary, we have found that the transfer-matrix method widely used in the
calculation of the band structure of semiconductor quantum wells has limitations due to
its intrinsic numerical instability. We have pointed out that the numerical instability arises
from free-propagating transfer matrices. We have proposed a new scattering-matrix method
for the multiple-band Kane model within the envelope-function approximation. Compared
with the transfer-matrix method, the proposed algorithm has been found to be more efficient
and stable. We have used the four-band Kane model to check the validity of the method
and found that the results are in good agreement with earlier calculations.
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